Patric Römbke, Annette Schier and Hubert Schmidbaur*

Anorganisch-chemisches Institut der Technischen Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany

Received 4th May 2001, Accepted 25th June 2001 First published as an Advance Article on the web 13th August 2001

(Phosphine)gold(I) organosulfonates and organosulfinates (R₂P)Au–OS(O)₂R' (A) and (R₂P)Au–S(O)₂R' (B), respectively, are active catalysts for the addition of alcohols to alkynes. A series of compounds of type A(R = Phand Me, R' = p-Tol; R = Ph, R' = p-Py; R = Ph and Me, R' = Et) and type **B** (R = Ph, R' = p-Tol; R = Ph and Me, R' = Me) were prepared and characterized by analytical and spectroscopic data. The crystal structure of [p-TolS(O),O-Au(PPh₃)]·CH₂Cl₃ was determined by single crystal X-ray diffraction. The molecules are aggregated into pairs with O-bonded gold atoms and short Au · · · Au contacts [3.1770(3) Å]. By contrast, crystals of "p-TolS(O)O-Au(PPh₃)" contain intimately aggregated ion pairs of the homoleptic components $[(Ph_1P)_2Au]^+[p-TolS(O)_2]_2Au]^-$ with a short $Au \cdots Au$ contact [2.9249(2) Å] and a strongly bent P-Au-Paxis [156.66(4)°]. The sulfinate ligands are both S-bonded to the gold atom. Analogous p-tolylsulfinate complexes were also prepared with the isocyanide ligands 'BuNC and 2,6-Me₂C₆H₃NC. Their spectroscopic data indicate ionic solid state structures with homoleptic cations and anions.

Introduction

Gold chemistry is dominated largely by the coordination of soft (polarizable) ligands to the closed-shell (5d¹⁰) univalent state Au(I). This is not only true for the classical cyanide, isocyanide and thiolate ligands, but also for the ever-growing family of polyfunctional tertiary phosphines.² By contrast the coordination chemistry of gold(I) with hard (less polarizable) ligands has developed very slowly, and compounds with fluorine, oxygen or nitrogen donor atoms are still very limited in number.³

Recent work has shown, however, that mixed ligand combinations L-Au-X, with L being very soft and X being extremely hard lead to catalytic activity previously unprecedented in gold(I) chemistry.4 While the neutral ligand L may be selected from the large variety of tertiary phosphines, the anionic component X can be derived mainly from oxo-acids of sulfur. This group of acids comprises the large family of sulfuric, sulfurous, sulfinic, and sulfonic acids, which range from hard sulfur(vI) compounds, like the highly electronegative fluorosulfuric and fluoroalkylsulfonic acids,5 to softer sulfur(IV) compounds, such as sulfinic acids.

It is obvious from the literature that gold(I) sulfates, sulfonates and sulfinates have never been investigated in detail, and that their structural chemistry was left largely unexplored.⁶⁻⁸ This situation parallels the state of affairs with the corresponding phosphonates and phosphinates, which have been studied more extensively only very recently.⁹⁻¹² As a continuation of our previous endeavours in this area,⁸⁻¹¹ and driven by the new incentive from catalysis, we have now investigated a few representative examples of the general formulae (L)Au-S(O)₂R and $(L)Au-OS(O)_2R$.

Preparative studies

Gold(I) arylsulfonate complexes can be prepared using the silver salt method as applied to (phosphine)gold(I) chloride precursors. Thus, treatment of (triphenylphosphine)gold(I) chloride with equimolar quantities of silver p-tolylsulfonate in dichloromethane at room temperature leads to a precipitate of silver chloride and, from the mother liquor after filtration, a 78% yield of (triphenylphosphine)gold p-tolylsulfonate (1) is isolated as colourless crystals; m.p. 162 °C with decomposition. The trimethylphosphine analogue 2 is generated in 75% yield from (Me₃P)AuCl and p-MeC₆H₄SO₃Ag following the same procedure (m.p. 129 °C with decomposition). (Ph₃P)AuCl was also converted into the p-pyridylsulfonate (3) using the corresponding reagents (77% yield). Silver ethylsulfonate was employed for the synthesis of (Me₃P)Au-OSO₂Et (4) and (Ph₃P)Au-OSO₂Et (5) in 85 and 90% yields, respectively.

$$(R_3P)AuCl + AgOS(O)_2R' \xrightarrow{-AgCl} (R_3P)AuOS(O)_2R'$$
 (1)

Complex	R	R′
1	Ph	p-Tol
2	Me	p-Tol
3	Ph	p-Py
4	Me	Et
5	Ph	Et

All (phosphine)gold sulfonates were identified through their analytical and spectroscopic data. Their ³¹P NMR chemical shifts suggest that the compounds are present as LAuX molecules in solution, since [L₂Au]⁺ cations in an ionic form with [AuX₂] anions are known to have larger downfield shifts. 8,13 Similar arguments can be derived from the IR data (see Experimental).7 (Phosphine)gold organosulfonates have previously been prepared in situ for catalytic purposes, but their properties were not disclosed.4

Gold(I) arylsulfinates can be synthesized following a similar route to that employed for the preparation of the sulfonates. Silver p-tolylsulfinate reacts with (triphenylphosphine)gold chloride in tetrahydrofuran at −70 °C to give an AgCl precipitate and p-TolS(O)O-Au(PPh₃) (6, m.p. 98 °C with decomposition) in 94.5% yield. Colourless needles of the products can be grown from solutions in dichloromethane upon addition of pentane at -30 °C.

For the preparation of the (triphenylphosphine)gold(I) and (trimethylphosphine)gold(I) methylsulfinate complexes (7, m.p.

$$Me \xrightarrow{\hspace{1cm}} S(O)_2Ag + (Ph_3P)AuCl$$

$$THF - AgCl$$

$$Me \xrightarrow{\hspace{1cm}} S(O)_2Au(PPh_3)$$

$$6$$

79 °C with decomposition, 84.5% yield; **8**, m.p. 68 °C with decomposition, 83% yield), the (R_3P)AuCl complexes were first converted into the trifluoroacetates (R_3P)AuOC(O)CF₃ by reaction with CF₃COOAg in CH₂Cl₂. These intermediates were then reacted with MeS(O)ONa in methanol at -78 °C. The pale-yellow compounds could not be crystallized. Solutions in dichloromethane, chloroform or tetrahydrofuran undergo rapid decomposition at room temperature.

$$(R_{3}P)AuCl \xrightarrow{+CF_{3}COOAg} (R_{3}P)AuOC(O)CF_{3} \xrightarrow{+MeSO_{2}Na} (R_{3}P)AuS(O)_{2}Me$$

$$(R_{3}P)AuS(O)_{2}Me$$

$$(3)$$

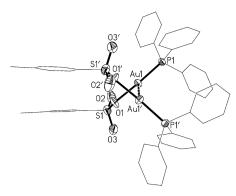
$$7; R = Ph$$

$$2 (L)AuS(O)2R' \rightleftharpoons [(L)2Au]+ [Au(S(O)2R')2]- (4)$$
6–10

Complex	L	R′
6	Ph ₃ P	<i>p</i> -Tol
7	Ph_3P	Me
8	Me_3P	Me
9	XyNC	<i>p</i> -Tol
10	¹BuNC	<i>p</i> -Tol

Two gold(I) sulfinate complexes were also prepared with isocyanide ligands. (2,6-dimethylphenyl isocyanide)gold(I) ["(*m*-xylylisocyanide)gold(I)"] *p*-tolylsulfinate *p*-TolS(O)₂-Au-(CNXy), **9**, was obtained from (XyNC)AuCl and *p*-TolS(O)₂Ag in dichloromethane at -70 °C in 92% yield; m.p. 112 °C with decomposition. The analogous 'butyl isocyanide complex *p*-TolS(O)₂Au(CN^tBu) **10** was synthesized accordingly from (^tBuNC)AuCl in 86% yield; m.p. 98 °C with decomposition.

Me
$$-S(O)_2Ag + (RNC)AuCl$$


$$CH_2Cl_2 - AgCl$$

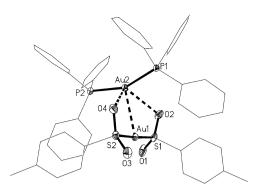
$$(RNC)AuS(O)_2 - Me$$

$$9, R = Xy$$

$$(5)$$

 $10, R = {}^{t}Bu$

Fig. 1 Molecular structure of compound **1** (ORTEP drawing with 50% probability ellipsoids for the core atoms; H-atoms omitted for clarity). Selected bond lengths [Å] and angles [°]: Au1–O1 2.086(2), Au1–P1 2.2123(8), Au1···Au′ 3.1770(3); P1–Au1–O1 175.47(8).


The complexes show CN stretching vibrations in their IR spectra at 2217 and 2246 cm⁻¹, respectively. The high abundance of the ions $[L_2Au]^+$ (L = XyNC, 'Bu) in the mass spectra of these compounds suggests ionic structures with homoleptic cations and anions, but no single crystals could be grown for structure determinations.

Crystal structure analyses

Crystals of the sulfonate complex 1 (colourless rods from $\mathrm{CH_2Cl_2}$ –n- $\mathrm{C_5H_{12}}$ at $-30\,^{\circ}\mathrm{C}$) are monoclinic, space group C2/c with Z=8 formula units and dichloromethane molecules in the unit cell. The complexes are aggregated into pairs through aurophilic bonding [Au–Au1 3.1770(3) Å]. In the dimers, the components are related by a crystallographically imposed two-fold axis. Through the mutual approach of the monomers, the P–Au–O axes are bent and deviate significantly from linearity [175.47(8)°]. The gold atoms are oxygen-bonded [Au1–O1 2.086(2) Å, S1–O1–Au1 118.6(2)°]. The corresponding sulfuroxygen bond thus represents a single bond with S1–O1 1.491(3) Å and is longer than the two remaining S–O bonds [S1–O2 1.441(4), S1–O3 1.425(4) Å] (Fig. 1).

Crystals of complex 5 (from tetrahydrofuran-diethylether at -30 °C) were also investigated by X-ray methods, but the crystallinity of the specimens was not good enough to allow a satisfactory refinement of the structure. From the preliminary results, however, there can be no doubt that the sulfonate compound 5 also has the proposed heteroleptic structure, *i.e.* (Ph₃P)AuOS(O)₂Et, and not a homoleptic ion-pair structure as observed for the sulfinate 6. The latter appears to be favoured only for gold(1) sulfinates.

Crystals of complex 6 (from CH₂Cl₂−n-C₅H₁₂ at −30 °C) are triclinic, space group $P\overline{1}$ with Z = 2 formula units in the unit cell. The asymmetric unit contains an ion pair with no crystallographically imposed symmetry. As already derived from mass spectrometric results, this dinuclear unit contains the two homoleptic ions with quasi-linear configurations at both metal centers (Fig. 2). The molecular axes of the two ions are crossed and have a short metal-metal contact of 2.9429(2) Å. Obviously, in order to allow a very close approach, the two axes are bent very significantly to reach an unprecedentedly small P1-Au2-P2 angle of only 156.66(4)° in the cation, and 176.50(4)° for S1-Au1-S2 in the anion. This result strongly supports the idea of aurophilic bonding in 6, because such a strong bending of a P-Au-P axis is observed only for species where a strong neutral donor ligand or a soft anion are present to increase the coordination number of the metal atom from 2 to 3. Examples of such cases include $[(Ph_3P)_3Au]^+$ and $[Au(GeCl_3)_3]^{-}$.^{14,15} From the structure of 6, it appears that in the ion pair, the di(sulfinato)aurate(I) anion plays the role of a donor ligand for the cation, with its gold atom as the donor center!

Fig. 2 Molecular structure of compound **6** (ORTEP drawing with 50% probability ellipsoids for the core atoms; H-atoms omitted for clarity). Selected bond lengths [Å] and angles [°]: Au1–S1 2.293(1), Au1–S2 2.295(1), Au2–P1 2.311(1), Au2–P2 2.305(1), Au1···Au2 2.9429(2), Au2···O2 3.218(2), Au2···O4 3.239(2); S1–Au1–S2 176.50(4), P1–Au2–P2 156.66(4).

In the anion of 6, the two sulfinate ligands are sulfur-bonded, in agreement with the principle of hard and soft acids and bases which predicts a preference of soft gold(I) for soft sulfur(IV) over oxygen. This arrangement is reminiscent of the structure of the analogous phosphinate or phosphite complexes of the types $[Au\{P(O)R_2\}_2]^-$ and $[\{(RO)_3P\}_2Au]^+$ where the gold atoms are exclusively phosphorus-bonded, not oxygenbonded. 9-12 There are two Au-O contacts (O2, O4) which may also influence the bonding geometry at Au2, but the effect is expected to be small. As perhaps should be expected, only the sulfonate complexes show the molecular structure LAuX which, upon dissociation of the leaving group X⁻, will yield the cationic unit [LAu]⁺ which is considered the catalytically active species. The sulfinate complexes have homoleptic, ionic structures, from which the generation of [LAu]⁺ species is less obvious, and in fact unlikely.

Experimental

All experiments were carried out in an atmosphere of pure dry nitrogen. Solvents were dried and saturated with nitrogen. Glassware was oven-dried and flushed with nitrogen. Standard equipment was used throughout. Starting materials were commercially available or were prepared using literature methods: (Me₃P)AuCl, ¹⁶ (Ph₃P)AuCl, ¹⁷ (Ph₃P)AuOC(O)CF₃, ⁸ ^tBuNC and 2,6-Me₂C₆H₃NC, ¹⁸ (^tBuNC)AuCl and (2,6-Me₂C₆H₃NC)-AuCl. ¹⁹ The silver sulfonates and sulfinates were prepared following the procedure disclosed in the patent literature. ²⁰

$(Triphenylphosphine) \\ gold (I) \\ \textit{p-tolylsulfonate}, \\ 1$

A suspension of silver p-tolylsulfonate (300 mg, 1.1 mmol) in dichloromethane (20 mL) was treated with a solution of (Ph₃P)AuCl (500 mg, 1.0 mmol) in CH₂Cl₂ (10 mL) at 20 °C for 3 h with stirring. The AgCl precipitate was filtered off and the product was precipitated from the clear filtrate by addition of pentane. The product was filtered, washed with toluene and crystallized from CH₂Cl₂-pentane at -30 °C; colourless rods containing dichloromethane, m.p. 162 °C with decomposition: 490 mg (78% yield). NMR (CDCl₃, 20 °C), ¹H: δ 7.9–7.1 (m, 19H, C_6H_5/C_6H_4); 2.41 (s, 3H, Me); 5.3 (s, 2H, CH_2Cl_2). ³¹P{¹H}: δ 27.9 (s); ¹³C{¹H}: δ 134.1 (d, J = 14.0 Hz); 132.2 (s); 129.3 (d, J = 12.3 Hz); 127.6 (d, J = 64.9 Hz) for o, p, m and ipsoin C₆H₅; 141.7, 139.2, 129.0 and 126.5 all s for ipso, o, m and p in C₆H₄; 53.3 (s) for CH₂Cl₂; 21.3 (s) for Me. IR (KBr): 1261, 1184, 1146, 1100, 954 cm⁻¹ ν (SO₃R). MS (FAB): m/z 721 (11%) $[(Ph_3P)_2Au]^+$; 631 (3) $[M + 1]^+$; 459 (100) $[(Ph_3P)Au]^+$; 262 (6) [Ph₃P]⁺. C₂₆H₂₄AuCl₂O₃PS (715.35): calcd. C 43.6, H 3.4, S 4.5; found C 44.1, H 3.3, S 4.4%.

(Trimethylphosphine)gold(I) p-tolylsulfonate, 2

The compound was prepared similarly to **1** from p-TolSO₃Ag (600 mg, 2.2 mmol) and (Me₃P)AuCl (400 mg, 1.3 mmol) in dichloromethane (20 mL) in 75% yield (430 mg); m.p. 129 °C with decomposition. NMR (CDCl₃, 20 °C), 1 H: δ 7.81 and 7.21 (4H, m, C₆H₄); 2.36 (s, 3H, MeC); 1.62 (d, J = 2.2 Hz, 9H, MeP). 31 P{ 1 H}; δ −15.8 (s). 13 C{ 1 H}: δ 141.7, 139.3, 129.1 and 126.4 all s for ipso, o, m, and p in C₆H₄; 21.5 (s, MeC); 15.9 (d, J = 51.5 Hz, MeP). MS (FAB): mlz 445 (14%) [M + 1] $^{+}$; 444 (0.5) [M] $^{+}$; 349 (16) [(Me₃P)₂Au] $^{+}$; 273 (100) [(Me₃P)Au] $^{+}$. C₁₀H₁₆AuO₃PS (560.38): calcd. C 27.1, H 3.6, S 7.2; found C 27.1, H 3.4, S 7.2%.

(Triphenylphosphine)gold(I) p-pyridylsulfonate, 3²¹

The compound was prepared similarly to **1** from silver p-pyridylsulfonate (260 mg, 0.97 mmol) and (Ph₃P)AuCl (400 mg, 0.8 mmol) in 30 mL of CH₂Cl₂ in 77% yield (380 mg); m.p. 156 °C with decomposition. NMR (CDCl₃, 20 °C), ¹H: δ 8.7–8.3 (m, 4H, Pyr); 7.7–7.4 (m, 15H, Ph). ³¹P{¹H}: δ 30.5 (s). MS (FAB): m/z 974 (5%) [(Ph₃P)₂Au₂SO₃Py]⁺; 721 (2) [(Ph₃P)₂Au]⁺; 619 (16) [M + 1]⁺; 618 (59) [M]⁺; 459 (100) [(Ph₃P)Au]⁺; 262 (7) [Ph₃P]⁺. C₂₃H₁₉AuNO₃PS (618.25): calcd. C 44.6, H 3.1, N 2.4, S 5.2; found C 44.2, H 3.3, N 2.0, S 5.0%.

(Trimethylphosphine)gold(I) ethylsulfonate, 4

The compound was prepared similarly to 1 from silver ethylsulfonate (170 mg, 0.78 mmol) and (Me₃P)AuCl (200 mg, 0.65 mmol) in 20 mL of tetrahydrofuran in 85% yield (210 mg); m.p. 122 °C with decomposition. NMR (CDCl₃, 20 °C), ¹H: δ 3.02 (q, J = 7 Hz, 2H, CH₂); 1.38 (t, J = 8 Hz, 3H, MeC); 1.64 (d, J = 12.1 Hz, 9H, MeP). ³¹P{¹H}: δ -12.5, s. ¹³C{¹H}: δ 46.0 (s, CH₂); 8.9 (s, MeC); 16.0 (d, J = 68 Hz, MeP). MS (FAB): m/z 655 (42%) [(Me₃P)₂Au₂OSO₂Et]⁺; 579 (56) [Me₃PAu₂OSO₂Et]⁺; 383 (8) [M + 1]⁺; 273 (100) [(Me₃P)Au]⁺. C₅H₄AuO₃PS (382.17): calcd. C 15.7, H 3.7; found C 15.4, H 3.5%.

(Triphenylphosphine)gold(I) ethylsulfonate, 5

The compound was obtained as above from EtSO₃Ag (216 mg, 1.0 mmol) and (Ph₃P)AuCl (400 mg, 0.81 mmol) in 40 mL of tetrahydrofuran in 90% yield (412 mg): m.p. 135 °C with decomposition. NMR (CDCl₃, 20 °C), ¹H: δ 7.6–7.2 (m, 15H, Ph); 3.05 (q, J = 7 Hz, 2H, CH₂); 1.42 (t, J = 8 Hz 3H, Me). ³¹P{¹H}: δ 29.6 (s). ¹³C{¹H}: δ 134.3 (d, J = 15 Hz), 132.5 (s), 129.5 (d, J = 13.9 Hz) and 127.9 (d, J = 65.3 Hz) for o, p, m and ipso in C₆H₅; 46.3 (s, CH₂); 9.5 (s, Me). IR (KBr): 1275, 1270 v_a (SO₂R), 1170 cm⁻¹ v_s (SO₂R). MS (FAB): m/z 721 (16%) [(Ph₃P)₂Au]⁺; 569 (2) [M + 1]⁺; 459 (100) [(Ph₃P)Au]⁺, 262 (4) [Ph₃P]⁺. C₂₀H₂₀AuO₃PS (568.38): calcd. C 42.2, H 3.5, S 5.6; found C 41.4, H 3.7, S 5.1%.

(Triphenylphosphine)gold(I) p-tolylsulfinate, 6

Silver *p*-tolylsulfinate (213 mg, 0.81 mmol) was suspended in 20 mL of tetrahydrofuran, cooled to $-70\,^{\circ}\text{C}$ and treated with a solution of (Ph₃P)AuCl (400 mg, 0.81 mmol) in 20 mL of tetrahydrofuran. The reaction mixture was filtered after 2 h of vigorous stirring. The filtrate was concentrated in a vacuum and precooled pentane added (at $-70\,^{\circ}\text{C}$); colourless needles, m.p. 98 °C with decomposition; 470 mg (94.5% yield). NMR (CDCl₃, 20 °C), $^{1}\text{H}:\delta$ 7.9–7.1 (m, 19H, C₆H₅/C₆H₄); 2.39 (s, 3H, Me). $^{31}\text{P}\{^{1}\text{H}\}:\delta$ 30.4 (s). MS (FAB): 721 (100%) [(Ph₃P)₂Au]⁺, 615 (3) [M + 1]⁺, 459 (57) [(Ph₃P)Au]⁺, 262 (4) [Ph₃P]⁺. C₂₅H₂₂AuO₂PS (614.45): calcd. C 48.9, H 3.6, S 5.2; found C 49.4, H 4.2, S 4.3%.

(Triphenylphosphine)gold(I) methylsulfinate, 7

(Ph₃P)AuCl (400 mg, 0.81 mmol) was converted into (Ph₃P)AuOC(O)CF₃ by treatment with CF₃COOAg (180 mg, 0.81 mmol) in 20 mL of CH₂Cl₂ at -78 °C for 30 min. The

	<i>p</i> -TolS(O) ₂ −Au(PPh ₃)•CH ₂ Cl ₂ 6	p-TolS(O) ₂ O−Au(PPh ₃)·CH ₂ Cl ₂ 1
Crystal data		
Formula	$C_{51}H_{46}Au_2Cl_2O_4P_2S_2$	$C_{26}H_{24}AuCl_2O_3PS$
$M_{\rm r}$	1313.77	715.35
Crystal system	Triclinic	Monoclinic
Space group	$P\bar{1}$	C2/c
alÅ	12.4984(2)	18.7637(2)
b/Å	13.1125(3)	16.5719(2)
c/Å	15.9587(3)	17.9879(2)
a/°	90.213(1)	()
βl°	91.173(1)	111.590(1)
γ/°	101.733(1)	
$V/\text{Å}^3$	2562.1(1)	5200.9(1)
Z	2	8
Data collection		
T/K	143	143
Measured reflections	37101	41169
Unique reflections	$9698 [R_{int} = 0.0435]$	$5720 [R_{int} = 0.0409]$
Refls. used for refinement	9046	5331
Refinement		
Refined parameters	568	307
Final R values $[I > 2\sigma(I)]$		
R1 ^a	0.0307	0.0276
$wR2^b$	0.0717	0.0633
(shift/error) _{max}	<0.001	< 0.001
$\rho_{\text{fin}}(\text{max/min})/\text{e Å}^{-3}$	1.172/ -1.198	0.842/ -0.870

 ${}^{a}R1 = \Sigma(||F_{o}| - |F_{c}||)/\Sigma|F_{o}|. \ {}^{b}wR2 = \{[\Sigma w(F_{o}^{2} - F_{c}^{2})^{2}]/\Sigma[w(F_{o}^{2})^{2}]\}^{1/2}; \ w = 1/[\sigma^{2}(F_{o}^{2}) + (ap)^{2} + bp]; \ p = (F_{o}^{2} + 2F_{c}^{2})/3; \ a = 0.0129 \ (1), \ 0.00 \ (6); \ b = 16.87 \ (1), \ 6.74 \ (6).$

reaction mixture was filtered and the filtrate added to a suspension of MeSO₂Na (160 mg, 1.6 mmol) in 20 mL of methanol and stirred for 8 h at -78 °C. After filtration, the product was precipitated from the filtrate by addition of pentane; 84.5% yield (370 mg); m.p. 79 °C with decomposition. NMR (CDCl₃, 20 °C), ¹H: δ 7.6–7.4 (m, 15H, Ph); 2.94 (s, 3H, Me). ³¹P{¹H}: δ 30.9 (s). MS (FAB): m/z 721 (23%) [(Ph₃P)₂Au]⁺; 459 (100) [(Ph₃P)Au]⁺, 262 (9) [Ph₃P]⁺. C₁₉H₁₈AuO₂PS (538.36): calcd. C 42.4, H 3.3; found C 42.1, H 3.0%.

(Trimethylphosphine)gold(I) methylsulfinate, 8

The compound was obtained similarly to 7 from (Me₃P)AuCl (200 mg, 0.65 mmol), CF₃CO₂Ag (160 mg, 0.72 mmol) and MeSO₂Na (130 mg, 1.3 mmol) in 20 mL of CH₂Cl₂ and 20 mL of methanol, respectively; 83% yield (190 mg); m.p. 68 °C with decomposition. NMR (CDCl₃, 20 °C), ¹H: δ 3.21 (s, 3H, MeS); 1.87 (d, J = 17.6 Hz, 9H, MeP); ³¹P{¹H}: δ −14.1 (s). ¹³C{¹H}: δ 37.4 (s, MeS); 15.9 (d, J = 42.3, MeP). MS (FAB): m/z 349 (100%) [(Me₃P)₂Au]⁺; 272 (49) [(Me₃P)Au]⁺. C₄H₁₂AuO₂PS (352.15): calcd. C 13.6, H 3.4; found C 14.1, H 3.1%.

$(2,\!6\text{-}Dimethyl phenylisocyanide}) gold ({\tt I}) \textit{ p-tolyl sulfinate}, 9$

(XyNC)AuCl (230 mg, 0.63 mmol) was treated with *p*-TolSO₂Ag (180 mg, 0.68 mmol) in dichloromethane (20 mL) at -70 °C for 3 h with stirring. The reaction mixture was filtered and the product precipitated from the filtrate by addition of precooled pentane (-70 °C); yellow solid, m.p. 112 °C with decomposition; 280 mg (92% yield). NMR (CDCl₃, 20 °C), 1 H: δ 7.9–7.1 (m, 7H, C₆H₄/C₆H₃); 2.4 (s, 6H, Me_2 Xy); 1.6 (s, 3H, MeTol). IR (KBr): 2217 cm⁻¹. MS (FAB): m/z 484 (4%) [M]⁺; 459 (100) [(XyNC)₂Au]⁺; 328 (13) [(XyNC)Au]⁺. C₁₆H₁₆AuNO₂S (483.34): calcd. C 39.7, H 3.3, N 2.9; found C 39.3, H 3.2, N 2.8%.

(^tButylisocyanide)gold(I) p-tolylsulfinate, 10

The compound was obtained similarly to 9 from (*BuNC)AuCl

(110 mg, 0.35 mmol) and p-TolSO₂Ag (110 mg, 0.42 mmol) in 10 mL of CH₂Cl₂; yellow solid, m.p. 98 °C with decomposition; 130 mg (86% yield). NMR (CDCl₃, 20 °C), 1 H: δ 8.0–7.0 (m, 4H, C₆H₄); 1.90 (s, 3H, MeTol); 1.57 (s, 9H, t Bu). 13 C{ 1 H}: δ 130.7, 130.4, 129.2 and 127.5 all s for o, p, m, ipso of C₆H₄; 59.8 (t, J = 7.3 Hz, Me₃C); 30.2 (s, Me₃C); 22.3 (s, MeTol); CAu not detected. IR (KBr): 2246 cm $^{-1}$. MS (FAB): mlz 549 (5%) [Au₂SO₂-p-Tol] $^{+}$; 363 (2) [(t BuNC)₂Au] $^{+}$, 155 (100) [p-TolSO₂] $^{+}$. C₁₂H₁₆AuNO₂S (435.30): calcd. C 33.0, H 3.6, N 3.2; found C 32.2, H 3.4, N 2.8%.

X-Ray crystallography

Specimens of compounds 1 and 6 of suitable quality and size were mounted on the ends of quartz fibers in F06206R oil and used for intensity data collection on a Nonius DIP2020 diffractometer, employing graphite-monochromated Mo-Ka radiation. Intensity data were corrected for absorption effects (DELABS from PLATON). The structures were solved by a combination of direct methods (SHELXS-97)²² and difference-Fourier syntheses and refined by full matrix least-squares calculations on F^2 (SHELXL-97).²² The thermal motion was treated anisotropically for all non-hydrogen atoms. All hydrogen atoms were calculated and allowed to ride on their parent atoms with fixed isotropic contributions. Crystals of compound 6 contained some additional disordered and unidentified solvent in the lattice, which was not included in the refinement but was taken care of by the 'SQUEEZE'-procedure (from PLATON).²³ The volume occupied by the solvent is 236 Å³, the number of electrons per unit cell deduced by squeeze is 21. Further information on crystal data, data collection and structure refinement are summarized in Table 1. Important interatomic distances and angles are shown in the corresponding figure captions.

CCDC reference numbers 165245 and 165246.

See http://www.rsc.org/suppdata/dt/b1/b104001b/ for crystallographic data in CIF or other electronic format.

Acknowledgements

Support of this work by Deutsche Forschungsgemeinschaft, the Volkswagenstiftung and the Fonds der Chemischen Industrie is gratefully acknowledged. The authors are also indebted to Heraeus GmbH for the donation of chemicals.

References and notes

- H. Schmidbaur (editor), Gold: Progress in Chemistry, Biochemistry and Technology, Wiley, Chichester, 1999; Gmelins Handbuch der Anorganischen Chemie, 8th edn., Systemnr. 62: Gold, Verlag Chemie, Weinheim, 1954.
- 2 H. Schmidbaur, Angew. Chem., 1976, 24, 830; D. P. M. Mingos and T. E. Mueller, J. Organomet. Chem., 1995, 500, 251; Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th edn., Springer Verlag, Berlin, 1994, Supplementary vol. B2 (Gold); Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th edn., Springer Verlag, Berlin, 1995, Supplementary vol. B3 (Gold).
- 3 Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th edn., Springer Verlag, Berlin, 1992, Supplementary vol. B1 (Gold); J. Vicente, M. T. Chicote, M. D. Abrisqueta, P. Gonzalez-Herrero and R. Guerrero, Gold. Bull., 1998, 31, 83; A. Hamel, C. Hollatz, A. Schier and H. Schmidbaur, Z. Naturforsch., Teil B, 2000, 55, 889; J. M. Lopez-de-Luzuriaga, A. Schier and H. Schmidbaur, Chem. Ber. / Recueil, 1996, 130, 647; A. Grohmann, J. Riede and H. Schmidbaur, Z. Naturforsch., Teil B, 1992, 47, 1255; D. I. Nichols and A. S. Charleston, J. Chem. Soc. A, 1969, 2581; J. P. Fackler, M. N. I. Khan, C. King, R. J. Staples and R. E. P. Winpenny, *Organometallics*, 1991, **10**, 2178; A. Kolb, P. Bissinger and H. Schmidbaur, Inorg. Chem., 1993, 32, 5132; A. N. Nesmeyanov, E. G. Perevalova, Y. T. Struchkov, M. Y. Antipin, K. I. Grandberg and V. P. Dyadchenko, J. Organomet. Chem., 1994, 201, 343; J. Vicente, M.-T. Chicote, R. Guerrero, P. G. Jones and M. C. R. de Arellano, Inorg. Chem., 1997, 36, 4438; A. Bauer, N. W. Mitzel, A. Schier, D. W. H. Rankin and H. Schmidbaur, Chem. Ber., 1997, 130, 323; H. Schmidbaur and A. A. M. Aly, Angew. Chem., 1980, 92, 66; H. Schmidbaur and A. A. M. Aly, Angew. Chem., Int. Ed. Engl., 1980, 19, 71.

- 4 J. H. Teles, S. Brode and M. Chabanas, *Angew. Chem.*, 1998, **110**, 1475; J. H. Teles, S. Brode and M. Chabanas, *Angew. Chem., Int. Ed.*, 1998, **37**, 1415; J. H. Teles and M. Schulz, *World Pat.*, WO-A1 9721648, 1997 (to BASF AG).
- 5 Gmelins Handbuch der Anorganischen Chemie, 8th edn., Systemnr. 9: Schwefel, Teil B, Lfg. 2, Verlag Chemie, Weinheim, 1960; Gmelins Handbuch der Anorganischen Chemie, 8th edn., Systemnr. 9: Schwefel, Teil B, Lfg. 3, Verlag Chemie, Weinheim, 1963.
- 6 R. Hohbein, P. G. Jones, K. Meyer-Bäse, E. Schwarzmann and G. M. Sheldrick, Z. Naturforsch., Teil B, 1985, 40, 1029.
- 7 M. J. Mays and J. Bailey, J. Chem. Soc., Dalton Trans., 1977, 578.
- 8 M. Preisenberger, A. Schier and H. Schmidbaur, *J. Chem. Soc.*, *Dalton Trans.*, 1999, 1645.
- 9 C. Hollatz, A. Schier and H. Schmidbaur, *Inorg. Chem. Commun.*, 1998, 1, 115.
- 10 C. Hollatz, A. Schier, J. Riede and H. Schmidbaur, J. Chem. Soc., Dalton Trans., 1999, 111.
- 11 C. Hollatz, A. Schier and H. Schmidbaur, *Inorg. Chim. Acta*, 2000, 300–302, 191.
- 12 J. Vicente, M. T. Chicote and P. G. Jones, *Inorg. Chem.*, 1993, 32, 4960.
- 13 J. Yau and D. M. P. Mingos, J. Chem. Soc., Dalton Trans., 1997, 1103.
- 14 A. Bauer and H. Schmidbaur, J. Chem. Soc., Dalton Trans., 1997,
- 15 P. Schwerdtfeger and H. Schmidbaur, Z. Anorg. Allg. Chem., 2000, 626, 374.
- 16 K. Angermaier, E. Zeller and H. Schmidbaur, J. Organomet. Chem., 1994, 472, 371.
- 17 N. C. Baenziger, W. E. Bennet and D. M. Soboroff, *Acta Crystallogr, Sect. B*, 1976, 32, 962.
- 18 G. W. Gokel, R. P. Widera and W. P. Weber, Org. Synth., 1976, 55, 96.
- 19 D. S. Eggleston, D. F. Chodosh, R. L. Webb and L. L. Davis, *Acta Crystallogr., Sect. C*, 1986, **42**, 36.
- 20 J. Imta, J. Saito and U. Takashi (Mitsui Petrochemical Ind., Japan), Jpn. Kokai Tokkyo Koho, 1993, JP 05213854 A2 19930824.
- 21 Note added at proof: compound 3 has been found to undergo rearrangement, which is presently under investigation.
- 22 G. M. Sheldrick, SHELX-97, Program for Solution and Refinement of Crystal Structures, Universität Göttingen, Germany, 1997.
- 23 P. van der Sluis and A. L. Spek, Acta Crystallogr., Sect. A, 1990, 46, 194